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ABSTRACT: The linear Kalman–Bucy filter has seen considerable application to engineering problems involving both linear 
and nonlinear systems. The generally successful application of this procedure has been marred by the not uncommon 
appearance of the so-called divergence phenomenon. In our paper the “Kalman filter” is used as recursive estimation which is 
sufficient important to minimize the errors in discreet system by using matlab simulation. 

——————————      —————————— 
. 

U1 INTRODUCTION 
 In Kalman filter and Bucy, the state and 
parameter estimation problem initially without 
reference to the control problem, the inclusion 
of control inputs is trivial [1]. 
   In 1960 Kalman and Bucy 1961 employed by 
control engineers and other physical scientists 
has been successfully used in such diverse areas 
as processing of signals in aerospace tracking 
and underwater sonar and the statistical control 
of quality [1]. 
Many practitioners of statistics are not aware of 
the simplicity of this useful methodology. 
However, the model, the notations, and the 
techniques of Kalman filtering are potentially 
of great interest to statisticians doing to their 
similarity to linear models of regression and 
time series analysis, because of their great 
utility in applications [2]. 

 
U2 FILTER THEORY: 
 Divergence is caused by errors in the 
model assumed for the filter; most commonly, 
errors in the model of the plant constitute the 
dominate source of difficulty. Since the filter 
requires a linear model, errors can result either 
from the basic description of the system  
 
 
 
 
 
 

 
 
 
 
(possibly nonlinear) or from the approximations 
required obtain a linear system. The filter uses 
the plant model to relate data obtained at 
sampling times t R0R ,t R1R ….,t Rk-1R  to the state at the 
"current" time t RkR. As the time interval increases, 
the model errors generally become larger there 
by destroying the validity of these older data as 
a source of information about the current state 
[2]. 
 Divergence is said occur when the 
actual error in the estimate of the state becomes 
in consisting with the error covariance 
predicated of the sate becomes in consisting 
with the error covariance predicated by the 
filter equations and essentially represents a 
breakdown in the data processing method [2]. 
 The Kalman filter is a tool that can 
estimate the variables of a wide range of 
processes. In mathematical terms we would say 
that a Kalman filter estimates the states of a 
linear system. The Kalman filter not only works 
well in practice, but it is theoretically attractive 
because it can be shown that of all possible 
filters, it is the one that minimizes the variance 
of the estimation error. Kalman filters are often 
implemented in embedded control systems 
because in order to control a process, you first 
need an accurate estimate of the process 
variables [3]. 
 Many methods have been devised to 
combat the divergence problem in Kalman filter 
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applications and each can be considered as- a 
means of diminishing or eliminating the 
influence of the past data on the estimate of the 
current state. While this goal is sometimes 
achieved in rather indirect ways. The basic idea 
is not new but it deles not appear which 
received the attention that would appear to be 
warranted in the recursive filtering context, It 
was introduced in this context by “Fagin” for 
discrete systems with no plant noise and is 
generalized here to include both times -
continuous and time discrete systems with plant 
noise. Fagin refined to it as a method for the 
exponential age. Weighting of old data. More 
recently, “Morrison” designated the procedure 
is "fading memory filtering" [2]. 
 
3 FADING MEMORY FILTERING: 
 Fading memory filtering is an outgrowth 
of considerations relating to deterministic least-
squares. In this problem, discounting of past is 
accomplished through the choice of the least-
squares weighting matrices. If all data are be 
treated  equally, then the weighting matrices are 
all the  same, If the  data obtained at earlier 
times are to have a smaller influence than more 
recent data, then these data are discounted by 
assigning smaller values to the associated  
weighting matrices . One can show that the 
Kalman filter equations can be obtained as a 
solution to the unbiased, linear, mean square 
filtering problem or as the solution of a 
deterministic least-squares problem. The two 
solution yield the result that the least-square 
weighting matrices play the same role as the 
prior covariance matrices of the noise processes 
of the filtering problem [4].  
 This approach is often to taken the 
fading memory filter equations for time-
continuous and time- discrete  systems .The 
behavior of the error covariance matrix of the 
resulting filter .Also the fading memory filter is 
applied in an adaptive manner to a scalar  
system in order to emphasize the character of 
the resulting filtering procedure. Fading 
memory filtering seems to be the most 
successful and popular way to control 
divergence effects [4]. 

4 FADING MEMORY FILTERING: 
       For this discussion it will be assumed that 
the basic system can be desired approximately 
by the following system. The n-dimensional 
state is represented foe some finite interval by 
[5]: 
 𝑥(𝑡) = 𝑓(𝑡)𝑥(𝑡) + 𝑤(𝑡)    
……………………….. (1) 
And is observed imperfectly at each time 
through measurement quantities 
𝑧(𝑡) = ℎ(𝑡)𝑥(𝑡) + 𝑣(𝑡)    ………............. (2) 
The initial state x(t R0R)is assumed to have value a 
and covariance matrix MRoR. The plant and 
measurement noise process, w(t) and v(t), are 
zero mean white noise with covariance 
matrices. The noise processes are assumed to be 
mutually independent and independent of x(t R0R) 
for all t. 
 It is frequently true that the behavior of 
the state can be represented adequately by eq.1 
over some finite interval of time. However, the 
use of eq.(1) for more extending periods cannot 
be adjusted with the consequence in many 
filtering problems that the resulting model 
errors cause the occurrence of divergence. the 
filter bases its estimates x(t/t) on all data . 
 𝑍(𝑠),  1≤≤ Sto  and is being missed 
because the early data is no longer accurately 
related to x(t)  in the manner implied by eq. (1) 
and eq.(2). Thus, divergence control is 
essentially the problem of reducing the 
influence of this data on the determination of 
x(t/t). Since the errors resulting from the use of 
eq.1 would frequently be expected to 
accumulate gradually rather than to manifest 
themselves suddenly, the data should 
themselves be discount gradually.  
U5 THE BASIC FILTER EQUATIONS 
 The equations connected with Kalman 
filtering are collected in Table I [6]:  
TABLE I 
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 The Kalman filter for an nP

th
P – order 

linear discrete –time stochastic system in 
another nP

th
P-order linear discrete –time system. 

The filter input is the system measurement, and 
the filter output is the optimally estimated 
system state, as indicated in Figure 1. 

 
          Figure 2 shows a block diagram showing 
the relationships between the signals in the 
Kalman filter. The filter consists of a model of 
the system with zero noise inputs replacing the 
actual (unknown) system noise inputs and 
initial conditions determined by the 
measurement residuals through the Kalman 
gain K. 
 
 
 
   
U6 CONTINUOUS – TIME FADING 

MEMORY FILTERING: 
 As the already been mentioned, the 
discounting of data can be accomplished 

through the choice of the covariance matrices. 
With this in mind define a filter model in the 
following manner. At the current time , the 
actual and data be given by: 
 
   ( ) ( ) ( ) ( )T Tz t h t x t v t= + ………………….. 
(3) 
         Note that 𝑧 (𝑡) appears on the left-hand 
side of both eq's. (1-2) and eq's.(1-3) . This is 
done to emphasize that the data 𝑧 (𝑡) in a 
given application are known realizations so are 
not affected by a change in the model. 
However, to compensate for model in 
accuracies that result from the continued 
utilization of eq.(1) and  eq.( 2) , the fading 
memory filter assumes the data are more 
adequately  represented  by eq.(3) in which the 
measurement noise 𝑣(𝑡) is replaced  by noise 
𝑣𝑇(𝑡) with a larger covariance [6]. 
U7 DISCRETE- TIME FADING MEMORY 
FILTERING: 
 The results of the preceding section can 
be extended without difficulty to time- discrete 
systems. That is, suppose the state behavior is 
described by a linear difference equation 
instead of eq.(1) and that the measurements 

eq.(2) occur only at discrete instants: 
 

………………….(4) 

Corrector Predictor 
Kalman filter Equations              

System model 
 

𝑥 ( 𝑘 + 1/𝑘 + 1)  =  𝑥 ( 𝑘 + 1/𝑘 ) 

∆𝑧(𝑘 + 1/𝑘) = 𝑧(𝑘 + 1)− 𝑧(𝑘 + 1) 
 

                        

𝑥 ( 𝑘 + 1/𝑘 ) =  𝐹(𝑘) 𝑥(𝑘/𝑘) , 𝑥(0/0)
=  0 

𝑧(ℎ + 1/𝑘)  =  𝐻(𝑘 + 1) 𝑥 (𝑘 + 1/𝑘) 
 

𝑥 ( 𝑘 + 1 )  =  𝐹(𝑘) 𝑥(𝑘)  +  𝑤(𝑘) 

𝑧(𝑘 + 1) = 𝐻(𝑘 + 1)𝑥(𝑘 + 1) + 𝑣(𝑘 + 1) 
 

Conveyances Kalman filter gain 

𝑃(𝑘 + 1/𝑘)  =  𝐹(𝑘) 𝑃(𝑘/𝑘) 𝐹𝑇(𝑘)  + 𝑄(𝑘)  ,𝑃(0/0)  =  𝑃0  
𝑃(𝑘 + 1/𝑘 + 1)  =  [ 1 − 𝑘(𝑘 + 1)𝐻(𝑘 + 1)]𝑃(𝑘 + 1/𝑘) 

 
𝐾(𝑘 + 1) = 𝑃(𝑘 + 1/𝑘) 𝐻𝑇(𝑘 + 1)[𝐻(𝑘 + 1)𝑃(𝑘 + 1/𝑘)𝐻𝑇(𝑘 + 1) + 𝑅(𝑘 + 1)]− 1 
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Fig2. Block Diagram of the Kalman Filter.[2]

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014                                                                           913 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑉𝑘        ….. …………….…… 
(5) 
Suppose that the filter model is given by: 
 
𝑋𝑘𝑁 = Ф𝑘,𝑘+1

𝑁 + 𝑊𝑘−1    ………………….. 
(6) 

𝑍𝑘 = 𝐻𝑘 + 𝑋𝑘𝑁 + 𝑉𝑘𝑁           
………………..(7) 

Where the superscript N is viewed as current 
time. 
 
 
 
8 STABILITY OF FADING MEMORY 
FILTER: 
        Figure 1 illustrates block diagram 
design description of a second order Fading 
Memory Filter (FMF). 
         The design and operation of this filter can 
be described by the following recurrence 
relations: 
 
𝑋𝑛 = 𝑋𝑛−10 + 𝑋𝑛−10 𝑇𝑠 + 𝐺⌈𝑋𝑛0 −
(𝑋𝑛−10 + 𝑋𝑛−10 𝑇𝑠⌉          …………. (8) 

𝑋𝑛0 = 𝑋𝑛−10 + 𝐻 𝑇𝑠⁄ �𝑋𝑛_1
0 − 𝑋𝑛−10 +

𝑋𝑛−10 𝑇𝑠 �            ……….… (9) 

Where x is the input sinusoidal signal, xo is the 
distance which represents one of FMF outputs, 
xo

n is the first order derivative of xo, which 
represents the velocity, TS is the time delay, 
and G is the gain of the filter. The FMF gain is 
given by 

21 β−=G                                                     
……….……. (10) 
      where  β  has values 0< β <1. 

2)1( β−=H                                                 
………….….. (11) 
      The Fading Memory Filter can be used to 
reduce the noise associated with the signal 
transmission, in addition the distance, velocity 
and the acceleration can be generated without 
need for measurements, and also, the gain is 

constant in the FMF, so there is not need for 
differential equation to calculate the gain . 
U9 KALMAN FILTER MODEL (FMF 
SIMULATOR DESIGN AND 
OPERATION): 
 Figure 3 depicts the detailed block 
diagram description of the Matlab simulate the 
Fading Memory Filter. 
 The simulator first generates a 
sinusoidal wave, and a noise signal using the 
random number generator, then ads the input 
sin and the noise. The resultant signal is then 
processed by the Zero-Order Hold circuit and 
displayed on the scope (scope3). 

After the required multiplications by the 
gain factors being applied, and the unit delay 
and all feedback processes being applied, then 
the first FMF output, i.e. distance X, is 
obtained, and displayed on (scope4). 
     On the other hand, the required processing is 
applied to obtain the second output, this is the 
velocity. The velocity is displayed on the 
(scope 5). 
All the outputs simulation is shown in figures 
(4, 5, 6, 7 and 8). 

 
U10 CONCLUSIONS: 
There are several sources of good up-to-date 
software specifically designed to address 
the numerical stability issues in kalman 
filtering. Scientific software libraries and 
workstation environments for the design of 
control and signal processing systems typically 
use the more robust implementation methods 
available. 
 In our situations where noise 
contaminated measurement must be used (for 
example radio or radar receiver ), the Kalman-
Bucy filter which used to reconstruction the 
state vector from noisy output signals, then the 
outputs of scope 1 in goes with scope 2 (fitted) 
after for 10sec. as window. 
 Although, its use our results in optimal 
rejection of the noise signals which corrupt the 
measurement, it requires a dynamics system of 
the same order at any dynamic system.   
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Fig 3. Simulation Block Diagram. 
 
 

 
Fig 4 : the output of scope 1                                    
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Fig 5 : the output of scope 3   

  
 
 
 
 

Fig6: The output of scope 4 

 

 
Fig.7: The Otput of Scope 5. 
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